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A plate oscillating across a liquid interface: 
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We consider the oscillatory motion of a solid plate into and out of a bath of liquid. 
Assuming that the displacement amplitude of the plate motion is small and that the 
capillary number is small, the problem reduces to solving an interfacial boundary- 
value problem for the response of the contact line. The characteristic contact angle 
versus contact-line speed relationship includes contact-angle hysteresis which is 
assumed small and comparable to the amplitude of the plate motion. Sinusoidal and 
square-wave plate motions are considered. We find that the contact line moves with 
the plate if the contact line is fixed, but has relative motion otherwise. It would then 
advance part of the time, recede part of the. time, and remain stationary in the 
transition periods. Further, we find that both contact-angle hysteresis and steepening 
of the contact angle with increasing contact-line speed are dissipative effects. 

1. Introduction 
The motion of a contact line formed by, say, a liquid, a gas and a solid is affected 

by its wetting and mobility properties. These enter a continuum description of the 
dynamics through a relationship between the contact angle I3 and the speed U,, of 
the contact line. This relationship 

I3 = G'( tiCL), ( 1 . 1 )  

if measured in the laboratory, has the form shown in figure 1 in which 8 increases 
with U,. but has a jump a t  U,, = 0. It can be argued (Dussan V. 1979) that a 
relation such as (1 .1)  should also hold for the actual angle 8 as well. In this case 
the existence of the interval $A-$R at zero speed is called contact-angle hysteresis 
where $A and $R are the advancing (liquid displaces gas) and receding (gas displaces 
liquid) static angles respectively. The contact line can advance only if I3 > $A, and 
can recede only if B < &. The contact line is stationary for & < B < # A .  Such issues 
are discussed in detail by Dussan V. (1979). 

The presence of contact-angle hysteresis can lead to finite-length portions of a 
contact line remaining stationary. Dussan V. & Chow (1983) and Dussan V. (1985) 
consider how a liquid drop on a tilted plate readjusts its contact line in order to 
progress down the plate. The front of the drop must advance while the rear must 
recede. They find in the presence of contact-angle hysteresis that a straight-line fixed 
portion must exist on each side of the drop along which Uc,  = 0 and 8 changes 
continuously from $R to $ A .  
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FIQURE 1 .  Sketch of experimental results of contact angle 0 versus contact-line speed U,,. 
U,, > 0 denotes liquid displacing gas; U,, < 0 denotes gas displacing liquid. 

FIQURE 2. Sketch of a plate being moved into and out of a bath of fluid. The interfacial height 
h is measured relative to the flat interface far from the contact line. h, is a reference point on the 
plate. 

In  the present work we address an analogous property of systems that possess 
contact-angle hysteresis. A contact line that reverses the direction of its motion must 
remain stationary for a non-zero time interval. We consider a plate that oscillates 
into and out of a bath of liquid as shown in figure 2. Wilhelmy-plate experiments 
leading to the measurement of dynamic contact-angle characteristics are based upon 
such an apparatus. During a complete cycle of the plate oscillation, the contact line 
undergoes both an advancing and a receding motion. The concern of this work is the 
transition behaviour between these two types of motions. 

The Wilhelmy-plate apparatus or wetting-balance technique has been used to 
investigate contact-angle behaviour. Here the force F required to immerse/withdraw 
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FIGURE 3. Immersion curves from Guastalla (1957, figure 11)  of force on the moving Wilhelmy plate 
as a function of its depth of immersion, (a )  uncorrected for buoyancy and (b )  corrected for buoyancy. 

the plate is measured and the contact angle is then calculated from the following 
expression derived from a static force balance : 

where P ,  W ,  d and H are, respectively, the perimeter, width, thickness and depth 
of immersion of the plate which experiences a force F. Here g is the acceleration 
due to gravity, c is the surface tension of the interface and p is the density of the 
liquid. Experiments are run a t  constant plate velocities within the range 
0.1 mm/min-250 mm/min. 

Johnson, Dettre & Brandreth (1977) immerse microscope slides coated with four 
different substrates into baths of water or hexadecane. They find that for certain 
fluid/fluid/solid systems the contact angle changes with the speed of the contact line, 
while for other systems the effect of contact-line speed on the contact angle appears 
to be negligible. In those cases where speed does affect the contact angle, they report 
an increase in contact angle for advancing motions and a decrease in contact angle 
for receding motions. In addition, they find that the variation of the contact angle 
with the contact-line speed could be quite different depending upon whether the 
motion is advancing or receding. 

Penn & Miller (1980a, b )  run experiments only at  very small frequencies w (20 min 
period, or longer) and find that under these conditions the contact angles remain 
constant for all fluid/fluid/solid systems considered. They report that the angle 
changes only during the conversion from advancing to receding motions, or vice 
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versa. At this time they observe that the contact line is stationary with respect to 
the plate. 

Data collected using the Wilhelmy-plate apparatus is normally reported in the 
form of a graph of force versus depth of immersion. Guastalla (1957) reports 
immersion curves like those shown in figure 3. From these he calculates the 'work 
of dewetting' for the system. Johnson & Dettre (1969) suggest that the openness of 
the immersion curves, as reported by Guastalla and others, indicates the presence 
of contact-angle hysteresis. 

To examine this hypothesis and further explore the effects of the presence of 
contact-angle hysteresis, we develop a system of equations governing the motion of 
the contact line induced by the oscillating plate. Sinusoidal aiid square-wave 
(Murphy 1984) plate motions are considered. The former type has continuous forcing 
and allows us to probe the contact-line response as a function of the relevant 
parameters. The latter type of motion most closely approximates the experimental 
set-ups in which the plate is moved at constant speed. 

2. Formulation 
Consider a plate moving vertically into and out of an infinite bath of liquid as 

shown in figure 2. We set up a coordinate system along and perpendicular to the plate 
such that the height of the fluid interface is zero as x + co . In addition we assume 
that the problem is two-dimensional so that the contact line is a straight line normal 
to the (2, y)-plane. 

The position of the plate at x = 0 and any time t is described by 

h, = D sinwt, (2.1) 

where hp is a material point on the plate, 2 0  is the amplitude of the plate motion, 
and w is its angular frequency of oscillation so that speed of the plate is 

V, = Dw cos wt. (2.2) 
The liquid flow is governed by the Navier-Stokes and continuity equations. The 

gas is considered passive in that its viscosity and density are negligible. The 
boundary conditions on the liquid-gas interface at y = h(x, t )  are the kinematic, 
the normal stress balancing the (constant) surface tension v times the curvature and 
the shear stress vanishing. Since the contact line may move, the imposition of the 
no-slip condition on the plate leads to a force singularity (Dussan V. & Davis 1974). 
Some means, such as the posing of effective slip, must be used to remove the 
singularity. Also, no liquid penetrates the solid. The remaining conditions required 
are those at the contact line. There is the condition of contact, 

h(O, t )  = A ( t ) ,  (2.3) 

where y = A(t)  locates the contact line. In posing the condition of contact angle 
versus speed of the contact line, we allow hysteresis but simplify the variation by 
posing a piecewise-linear model as shown in figure 4 ; we have 

6 = $R+G(O-)  U C L ,  U c L  < 0 at s = 0, y = A(t ) ,  (2.4) 

6 = $A -k G'(O+) LTCL? U C L  > 0 

$R < 6 < $A, U C L  = 0 
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FIGURE 4. Sketch of possible relationships between the contact angle 8 and the contact speed Uc.; 
(a) contact-angle hysteresis; (b) fixed contact line; ( c )  fixed contact angle; ( d )  smooth contact-angle 
variation. 

where 0 = tan-'(h,)+@. (2 .5 )  

We scale the governing system as follows: 

a :  
x+Lc = (--) , ( 2 . 6 ~ )  

Y+LV (2 .6b)  

t+w-1,  

speed + wD, 

pressure --f - , P D  
LC 

h+D. 

( 2 . 6 ~ )  

( 2 . 6 d )  

(2 .6e )  

( 2 . V  1 

where p is the viscosity; and v = p / p .  Here L,, the capillary lengthscale, is 
appropriate for static menisci and the pressure scale is consistent with slow viscous 
flow. These scalings give rise to the following non-dimensional groups : 

( 2 . 7 ~ )  

(2 .7b )  

( 2 . 7 ~ )  
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Water Ethyl alcohol Glycerine 

p = 1.0 gm/cm3 p = 0.79 gm/cm3 
u = 1.14 x cm2/s v = 1.70 x cm2/s v = 18.5 cm2/s 
u = 72.8 dyn/cm u = 22.0 dyn/cm 

p = 1.26 gm/cm3 

u = 63.0 dyn/cm 

w (rad/s) C B c B c! I3 
5 x 10-3 2.11 x 10-7 
1 x 10-2 4.23 x 10-7 
5 x 10-2 2.11 x 10-6 
1 x 10-1 4.23 x lop6 
5 x 10-1 2.1 i x 10-5 
1 4.23 x 
5 2.11 x 10-4 

10 4.23 x 10-4 
100 4.23 x 10-3 

lo00 4.23 x 

31.3 
15.6 
3.13 
1.56 
3.13 x 10-1 
1.56 x 10-l 
3.13 x 10-l 
1.56 x 
i .56 x 10-3 
i 5 6  x 10-4 

5.09 x 10-7 

1.02 x 10-5 
5.09 x 10-5 
1.02 x 10-4 
5.09 x 10-4 
1.02 x 10-3 

1.02 x 10-6 
5.09 x lo-@ 

1.02 x 1 0 - 2  
1.02 x 10-1 

122.0 
61 .O 
12.2 
6.10 
1.22 
6.10 x 10-l 
1.22 x 10-1 
6.10 x 
6.10 x 10-3 
6.10 x 10-4 

4.14 x 10-4 
8.27 x 10-4 
4.14 x 10-3 
8.27 x 10-3 
4.14 x 10-2 
8.27 x 
4.14 x 10-1 
8.27 x 10-l 
8.27 
8.27 x 10 

7.40 x 104 
3.70 x 1 0 4  
7.40 x 104 
3.70 x 103 
7.40 x lo2 
3.70 x lo2 
7.40 x 10 
3.70 x 10 
3.70 
3.70 x 10-l 

TABLE 1 .  For various values of the angular frequency of plate oscillation o the capillary number P 
(pv2w2/gu) i ,  and Bond number B = (gpv /uw)  are tabulated for the three fluids: water, ethyl alcohol 
and glycerine. Note that c! is small for a wide range of w 

where a is a ratio of the maximum plate immersion to the capillary lengthscale, C 
is the capillary number, and B is a Bond number based upon the Stokes lengthscale 

s, = ($ (2.8) 

B-l plays the role of the Reynolds number in the present system. Further, there is 
a non-dimensional number that  measures the effective slip or its equivalent. 

We shall be examining the limit 

a=(?) pgD2 i 4 I ,  

which can be realized for Wilhelmy-plate experiments by immersing the plate only 
a small depth 2 0  into the liquid. 

We now consider the size of the capillary number C and Bond number B.  In  table 
1 we list values of these parameters for water, ethyl alcohol and glycerine as the 
frequency w varies from 5 x to lo3. These values of w correspond to oscillation 
periods ranging from 21 min to 6 x s. Table 1 clearly shows that for the lower 
viscosity liquids, C is always extremely small. The same holds true for the more 
viscous oil as long as o < 1 rad/s. Thus we shall also assume that 

c 4  1 .  (2.10) 

At this time we make no assumptions on the order of B since its value changes more 
widely as o varies. Further, the ‘slip coefficient ’ is presumed fixed. 

We shall assume that the advancing angle $A is near in, 

$A = $ 7 ~  + ya, (2.11) 

$A-$R = Ma. (2.12) 

and that the hysteresis, though non-zero, is small, 
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Here y and M are order-unity constants for a+O. If y > 0 then, 4, > %a while if 
y < 0, then $, < +a. If M = 0, then hysteresis is absent. 

We fix the slip, first take the limit a+O and then the limit C-tO, with B = O ( l ) ,  
to obtain the interfacial boundary-value problem 

(2.13) h,,, - h, = 0 
subject to the contact-line boundary condition at x = 0, 

(2.14) i AO-cost = VA[ho,-y], ko-cost > 0 

Ao-cost = VR[ho,-y+W, AO-cost < 0 . 

y - M  d h,, < y ,  A,-cost = 0 

Here t is the scaled time, a dot denotes d/dt and subscripts x denote partial 
differentiation. In  conditions (2.14) 

1 
W G ( O + )  L, ’ VA = 

1 
VR = 

w G ( 0 - )  L, . 

( 2 . 1 5 ~ )  

(2.15b) 

Since G ( O + )  has units of inverse velocity, then V, characterizes the ratio of the actual 
contact-line speed to the laboratory contact-line speed. V, has an analogous 
interpretation. We note here that fixed contact angles have the G(0) = 0 so that 
V, -+ co and VR + 00. However, these approach infinity also if w + O .  Thus, systems 
cycled with small w may appear to exhibit fixed contact angles even though the 
G(0) =+ 0. Further, if the G ( O ) - +  SO that V,+O and VR+0, then the contact line 
is fixed to the plate. Such behaviour may appear to hold if w --f 00. 

Equation (2.13) balances surface tension and hydrostatic forces while (2.14) gives 
the contact-angle condition including hysteresis. This problem decouples (Young 
1985) from the flow problem which can be solved given the solution for the 
leading-order interface shape ho and leading-order contact-line position A,. In 
particular the problem for ho is independent of the slip model posed and would be 
independent of whatever device is used to remove the contact-line singularity present 
when the no-slip condition is enforced. The range of validity of this solution would, 
of course, depend on the ‘amount of slip ’, For example, if the slip were small, then the 
velocity gradients would be large near the contact line and one would have to make 
C exceedingly small in order to decouple the flow field from the interfacial problem 
posed above. 

3. Force balance 
The solution to system (2.13) and (2.14) can be used to obtain approximate 

formulae for the force balance on a finite plate oscillating through a liquid-gas 
interface. Let us consider a plate of height 21, D < 1, width W and thickness d ,  
suspended in a bath of liquid of viscosity p and density p as shown in figure 2. Let 
the motion of a point on the centre of the plate be described by (2.1) so that the 
depth of immersion H of the plate into the liquid is given by 

H = D(1-sinwt)+(l-D) = 1-Dsinwt. (3.1) 



334 G. W .  Young and S. H .  Daais 

Here we assume that the plate is at  the top of its stroke a t  time t = n/2w and that 
a portion of the plate of length 1- D is still submerged. A dynamic balance of the 
forces acting on the plate requires that 

dV 
M , $ = - M S g + F + p g H W d - 2 ( d +  W ) W C O S O + ~ ~  (3 .2)  

where M, = 2p, 1 Wd is the mass of the plate whose density is p , .  The right-hand side 
of (3.2) represents the gravitational, suspension, buoyant, surface tension and drag 
forces on the plate respectively. Note that for a thin plate, small d,  we can neglect 
the drag forces on the thin edges and then A represents the areas of the flat faces. 

If all the force terms are known, then measuring F determines the contact angle 
8. For 8 given by (2 .5)  the scaled force balance for small d becomes 

COSO = - h , ( l + ~ ' h ~ ) - t  = --- 

+- M ,  Dw2 sin t + C & dy dz, (3 .3)  
2 wva 

where z, the spanwise spatial coordinate, is scaled on W .  

on the plate so that (3.3) becomes 
Under the small-d, small-a, and small-C assumptions, we neglect the drag forces 

-hOJ = P ,  x = 0, (3.4a) 

where F - M , g + D W d p g  
2 wva 

(3 .4b )  

P measures the suspension force, gravitational force, buoyant force and a contribution 
due to the acceleration of the plate. 

The neglect of the drag force can be justified by finding the solution to the 
leading-order flow field and evaluating the last term of (3 .3) .  Since the velocity field 
would depend on the effective slip coefficient, the neglect of the drag would be 
justified a posteriori if C is small enough. The criterion for 'small enough' would 
depend on the slip; the smaller the slip the smaller that C must be. 

One can post an a priori though a much stricter limitation on C for the neglect 
of the drag. When d ,  a and C are small, the smallest contributions to (3.3) are the 
buoyant and drag forces. We neglect the latter compared with the former if C Q d / L ,  
which implies that 1 w g - l  d-l g 1 .  This is satisfied for w d 1 rad/s and d 2 0.02 cm 
for the fluids tested in table 1 .  

4. Solutions 
The solution of (2 .13)  is 

h, = C(t) exp (-x), 

where C(t )  is an unknown function of time determined by the contact-line boundary 
condition (2 .14) .  Since the motion of the plate is periodic, we expect that the 
interfacial response will also be periodic after all initial transients have decayed. We 
seek such a periodic solution. Let us begin then at time t = in when the plate is at  
the top position of the cycle according to the scaled version 

h, = sint (4 .2)  
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of (2.1). At this point we assume that the contact-line speed is given by 

(4.3) 
since the plate is being withdrawn from the bath just prior to t = in. Thus, the 
contact line is receding. From the periodicity assumption, S must be chosen so that 
(4.3) also holds at t = in; S will, of course, depend on V,, V,, y and M .  Assuming 
that we have such an 8, we can now solve for C(t). 

Equation (4.3) requires us to use the receding portion of (2.14) : 

Ao-cos t = vR[ho,-y +MI. (4.4) 
We substitute for A, using (2.3) and (4.1) into (4.4) and find that 

c+ VRC = cost+ V,[-y+M], 

the solution of which gives 
V, cos t + sin t 

C(t) = C; exp ( -  V, t )  + ( M -  y )  + Vk+l . 

(4.5) 

I n  this expression 6'; is a constant of integration. 
The constant C; is obtained by satisfying (4.3). We find that 

(4.7) 

(4.8) 

C - =  S-- exp (in VR) [ V z 1 ]  VR ' 

Therefore, h, is given by 
VR cost +sin t 

6'; exp ( -  V,t) + LM- y] + 
However, this is only valid when the contact-line speed is negative. At time t = tn, 
the plate is being pushed into the bath. Therefore, the contact line will want to 
advance so the contact-line speed must undergo a transition from a receding to an 
advancing motion. Its speed must pass through zero in order to do this. We assume 
that (4.8) is valid up until a time t, where 

A,-cost, = 0. (4.9) 
According to (4.4), this implies that  the contact angle a t  t, is 

h,, = y-M, (4.10) 

which is the receding angle #,. If we substitute (4.8) into (4.9), we find that t, satisfies 

V, cost, +sin t, 1 - 0 .  - 
P,+ 1 

VR [c; exp ( - VR tl) + (4.11) 

We find the solution t, numerically by using Newton's method. Up to  this point (4.8) 
is valid for !gc < t < t,. We note here that we require t, < tn and find this to  be true 
for all parameter values tested. 

From (2.14) we see that since we are a t  contact angle #R a t  t = t,, the contact line 
must remain fixed until the angle changes to $,. Only then can the contact line 
advance as the plate is pushed in. So we use the fixed portion of (2.14) and substitute 

A, - cos t = 0. (4.12) (4.1) into 

We find that C(t) = q + s i n t ,  (4.13) 

where 6'; is a constant of integration found by satisfying (4.10) a t  t = t,, viz. 

= M-y-sint,. (4.14) 
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h, = exp(-x)(sint-sint,+M--y} (4.15) 

This expression is valid until the time t = t,  when the contact angle reaches q5*, 

h,,-y = 0. 

We substitute (4.15) into (4.16) and find that 

(4.16) 

t, = sin-,[sin t ,  - MI. (4.17) 

This expression is consistent with in < t, < t, < in since the sine decreases for this 
range. Therefore the contact line remains fixed for times t, < t < t,, during which the 
expression (4.15) is valid. We note that the interval of time t,-t, that the contact 
line is fixed increases as M increases. This is consistent with (2.12) since increasing 
M implies the increasing of the contact-angle hysteresis. In  addition, t, also depends 
upon the plate motion through sint,. 

The plate is still being pushed 
in, so the contact line wants to advance. Conditions (2.14) require us to use the 

At t = t,, we are at the advancing contact angle 

If we substitute (4.1) into (4.18), we obtain 

the solution of which gives 
c+ VA c = cos t -  VA Y, 

VA cos t + sin t 
C(t) = C(: exp(- VAt)- -y+ 

V i +  1 

(4.18) 

(4.19) 

(4.20) 

In this expression C,+ is a constant of integration obtained through the matching of 
(4.1) with (4.15) a t  time t = t,. We find that 

c,+ = - [ 'A 'OS t 2  + sin t ,  ] exp ( VA t Z )  (4.21) 
P A + 1  

and thus h, is given by 

(4.22) 
VA cos t + sin t 

C,fexp(-VAt)--y+ 

This expression is valid as long as the contact line is advancing. However, eventually 
the plate is withdrawn from the bath for in < t < in, and thus the contact line will 
want to recede. The contact line changes from an advancing to a receding motion 
during which time its speed passes through zero. Therefore, (4.22) is valid until the 

time t,  where A,-cost, = 0. (4.23) 

From (4.18) we have that the contact angle a t  t ,  is 

h,,--y = 0,  (4.24) 

If we substitute (4.22) into (4.23), we find that t, which is the advancing angle 
satisfies VA cos t ,  + sin t, 

C,+ exp ( - VA t 3 )  + P A + 1  ] = o .  (4.25) 

We find the solution t,  numerically using Newton's method. So (4.22) is valid for 

Similarly to before, the contact line will remain fixed until the contact angle 
t ,  < t < t,. 
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changes to $R. Then it will begin to recede. We find that the contact line remains 

(4.26) 
fixed until t, = sin-l[sin t, + 1M] 
and during this time 

h, = exp(-x)(sint-sint,-y}. (4.27) 

We note that for all cases tested we find that in < t, < t, < $n so the plate has not 
reached the top of the cycle at t,. Thus, it is still being pulled up and the contact 
line is receding. Again (4.4) applies and we have 

VR cos t + sin t 
C$ exp(- VRt)+[M-y]+ 

where C,* is chosen so that (4.28) matches (4.27) a t  t,. We find 

(4.29) 

Now in order to satisfy the periodicity requirement, we need (4.8) evaluated at 

C; exp (--in VR) = C$ exp (-in VR). (4.30) 

This expression is satisfied by the correct choice of the initial speed S. We determine 
S by the following iterative procedure. We assign the initial value S = 1 and solve 
to obtain (4.28). We then calculate the contact-line speed at t = in. We use this value 
as the next guess for S and repeat the procedure until successive iterates agree to 
within 0.1 %. 

In  summary, we have that h, is given by the following regimes as shown in 
table 2:  

t = in to match (4.28) evaluated a t  t = in. This condition reduces to 

(i) $x < t < t,, (4.8) holds and the contact line recedes; 
(ii) t, < t < t , ,  (4.15) holds and the contact line is fixed; 

(iii) t, < t < t,, (4.22) holds and the contact line advances: 
(iv) t, < t < t,, (4.27) holds and the contact line is fixed; 
(v) t ,  < t < in, (4.28) holds and the contact line recedes, matching with (4.8) at the 

top of the cycle. 

5. Results and discussion 

G ( O + )  = G ( O - )  = co so that V, = VR = 0. Thus, 
One extreme case of contact-line behaviour is that of fixed contact lines. Here 

A,-cost = 0 (5.1) 

h, = exp(-x){k,+sint}, (5.2) 

for all time. This is consistent with the V,, VR+O limits of forms (4.8), (4.22) and 
(4.28), viz. 

where k, is a constant. The solution (5.2) satisfies (5.1) and the fixed-line portions 
of (4.15) and (4.27). 

A second extreme case of contact-line behaviour is that of fixed contact angles. 
Here G ( O + )  = G ( O - )  = 0 so that V, = V, = 00, and the laboratory contact-line 
speed is zero. Thus, the contact angle is either $, or #R and the actual contact-line 
speed is equal and opposite to the plate speed. Therefore, 

A,-cost = -cost (5.3) 
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to = t ,  = $7K 

4 Top of the plate stroke 
Contact angle = $R 

Contact angle = 
Bottom of the plate stroke 
Contact angle = 
Contact angle = $R 

Top of the plate stroke 

Top of the plate stroke 

Contact angle = $A 

Bottom of the plate stroke 
contact angle = $A 

Contact angle = $R 

Top of the plate stroke 

I; 
(a) 

1 contact angle = $R 

(b )  

Receding 
Fixed 
Advancing 
Advancing 
Fixed 
Receding 

Fixed 

Advancing 
Fixed 

Receding 

TABLE 2. Schematic of the contact-line motion: (a )  General case of mobile contact lines; 
( 6 )  Case of fixed contact angle 

or A = 0 if the angle is $A or $,. We see this in the limit V, = V, = 00 of (4 .8) ,  (4.22) 
and (4.28). All three expressions give 

( 5 . 4 4  h, = ( M - y )  exp (-z) 

or h, = - y  exp (-x), (5.4b) 

which describe static menisci. 
Further, we note that when V, = VR = 00, (4.11) and (4.25) become 

cost, = cost, = 0, (5 .5)  

so that t, = in and t, = in. Therefore, the periodic motion of the contact line for the 
case of fixed angle proceeds as follows: At the top of the plate cycle 3 = &. As 
the plate is pushed in, the contact line remains fixed to it until 0 changes to #A. Then 
the contact line advances with speed (-cost) until t = gn and the plate is at the 
bottom of the cycle. Then the plate is pulled out and the contact line remains fixed 
until 0 changes to &. Here the contact line recedes with speed (-cost) until t = $n 
and the plate is at the top of the cycle. This motion is then repeated, see table 2 .  

There is, however, one defect in the above description. We must have (5.1) satisfied 
during the fixed-line portion of the motion and (5.3) satisfied during the fixed-angle 
portions. A, equals cost for the former, yet A, = 0 for the latter. Since the transition 
between them occurs at t, and t,  we shall necessarily have ajump in the speed of the 
contact line a t  these times, unless 

cost, = cost, = 0; (5.6) 

see figure 5. However, we clearly see from (4.17) and (4.26) that t, =l= in and t, =+ in 
unless 

M = 0 ,  (5.7) 

and t, =+ g, t, =+ $ unless M = 2 .  (5.8) 

The first statement (5.7) would imply no hysteresis, while the second (5.8) would 
imply that the contact lines remain fixed throughout the plate cycle. This happens 
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FIGURE 5. Sketch of the (laboratory frame) contact-line speed for the case of fixed contact angle. 
Boundary-layer corrections in time are present when the fixed contact-angle assumption is relaxed. 

because the hysteresis is so large and the plate cycle amplitude so small, that the 
contact angle cannot change from q5, to q5, during a complete stroke of the plate. 

This jump in the contact-line speed can be explained after an examination of the 
contact-line boundary condition (2.14). If V, = V, = in this expression, then we 
lose the A-term on the right-hand side. Therefore, this limit of fixed contact angle 
is a singular perturbation of (2.14). If one applies the method of matched asymptotic 
expansions, boundary-layer corrections near t ,  and t ,  can be found ; see the dotted-line 
portions of figure 5.  These corrections are nothing more than the time-exponential 
terms in (4.8), (4.22) and (4.28). 

Since the 0 = G(U,,) curve represents a material characteristic, our results 
indicate that no materials may exhibit the exact fixed contact-angle form, but rather 
they may only approach it. 

We now consider general values of V, and V, and allow both y and M to vary. 
For all cases we plot the position of the contact line relative to the interface height 
as x +  co. The point h, marked on the plate is at y = 1 a t  the top of the cycle, t = an, 
and y = - 1 at the bottom, t = in. In addition, we plot the actual contact-line speed, 
and the laboratory contact-line speed. 

In  figures 6-8 we consider a symmetric angle-speed characteristic and set 
V, = V, = V .  We see that for V = 75, the response is near that described for fixed 
contact angles, while for V < 0.05, the response is near that for fixed contact lines. 
Figure 6 shows that the contact lines move more in the laboratory as V gets smaller. 
This is because the contact lines are becoming less mobile and slip less relative to 
the plate. Note too the development of the contact-line-speed boundary layer in 
figure 8 as V gets large. 

Table 3 lists the transition times t,-t, for this case. From the differences listed 
and the figures we see that the response is symmetric whether the contact line is 
advancing or receding, a consequence of V, = V,. Figures 9-11 show that this 
symmetry is not present when V, + V,. From the results for V, = 75, V, = 3 and 
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FIQURE 6. The interface position at the contact line versus time for the case G'(0') = G(0-). 
m, V = 75.0; 0, 5.0; A, 0.50, + , 0.05. y = 0.1, M = 0.2. 
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FIQIJRE 7. The contact-line speed versus time for the case G'(O+) = G'(0-). y = 0.1, 21f = 0.2. 
Symbols as figure 6. 
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FIGURE 8. The (laboratory frame) contact-line speed versus time for the case 
G ( O + )  = G(0-). y = 0.1, M = 0.2. Symbols as figure 6. 

1.5708 1.5841 2.2144 0.6303 4.7257 5.3560 0.6303 7.8540 -0.0133 VA = 75.0 
V, = 75.0 

V, = 5.0 
VR = 5.0 

VA = 0.5 
V, = 0.5 

V, = 0.05 
V, = 0.05 

V, = 5.0 
VR = 3.0 

V, = 3.0 
V, = 5.0 

TABLE 3. For the given values of the advancing and receding contact-line speed ratios V, and V,, 
the transition times t ,  to t, are shown. A t  the top of the plate cycle, t = jn, the contact-line speed 
is negative so the plate is receding. At t = t,, the contact-line speed is zero and the contact angle 
is &. At t = t , ,  the contact-line speed is zero and the contact angle is $*. During (t,, t z )  the contact 
line remains fixed. During ( tz .  t , )  the contact line advances. A t  t = t,, the contact-line speed is zero 
and the contact angle is $A. A t  t = t,, the contact-line speed is zero and the contact angle is 4,. 
During (t,, t,) the contact line is fixed. From t = t4 through t = in, when the plate is at  the top of 
the cycle again, the contact line recedes. The quantities t , - t ,  and t , - t ,  measure the amount of 
time the contact line is fixed 

1.5708 1.7682 2.2460 0.4778 4.9098 5.3876 0.4778 7.8540 -0.1923 

1.5708 2.6374 2.8546 0.2172 5.7788 5.9960 0.2172 7.8540 -0.3690 

1.5708 2.9963 3.1968 0.2005 6.1425 6.3430 0.2005 7.8540 -0.0448 

1.5708 1.8926 2.2955 0.4029 4.9098 5.3876 0.4778 7.8540 -0.3000 

1.5708 1.7680 2.2460 0.4780 5.0341 5.4371 0.4030 7.8540 -0,1919 
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FIGURE 9. The interface position at the contact line versus time for the case G ( O + )  =b G'(0-).  m, 
V A -  - 75.0 and V, = 3.0; 0, VA = 5.0 and V, = 3.0; A, V, = 3.0 and V, = 75.0; +, V, = 3.0 
and V, = 5.0. y = 0.1, M = 0.2. 
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FIGURE 10. The contact-line speed versus time for the case G(0') =+ G(0-). y = 0.1, M = 0.2 
Symbols as figure 9. 
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FIGURE 11. The (laboratory frame) contact-line speed versus time for the case G(0') =+ G(0-). 
y = 0.1, M = 0.2. Symbols as figure 9. 

I 

V, = 5 ,  V, = 3 we see that the contact lines advance differently yet recede similarly. 
Thus the advancing and receding motions differ. 

Note from table 3 that the transition times ( t , - t , ) ,  and ( t 4 - t 3 )  between the 
advancing and receding motions decrease as V decreases. This appears to be 
counterintuitive since decreasing V implies that the contact lines are becoming less 
mobile. Thus, one might expect them to behave for longer as fixed contact lines. Yet 
our results imply that the amount of time when they are fixed is smaller than for the 
fixed contact-angle case. This can be explained by considering (4.17) and (4.26) which 
define t ,  and t , .  As noted before, these depend upon the plate motion through sin t, 
and sint,, together with the sin-l expression. Table 3 shows that t1+7t and t3+2n 
as V decreases. The plate speed, V, = cost, is a maximum a t  these two times. 
Therefore, the transition occurs earlier because the plate is moving faster. 

Figures 12-14 show the results for varying M while keeping the other parameters 
fixed. In figure 13 the zero-speed portions occur over a longer length of time for large 
M .  Note that for M = 0, the case of zero hysteresis, there are no fixed portions. The 
advancing and receding angles, $, and &, are equal for this case so that the 
transition between the advancing and receding motion occurs instantaneously. 
Figure 12 shows wide variations in the amount of interfacial motion that occurs. The 
higher-hysteresis systems tend to deform most. The majority of this deformation 
takes place when the contact lines are fixed. Figures 13 and 14 show that the 
contact-line speeds vary only during this time. Thus, the response of the contact line 
is extremely sensitive to the amount of hysteresis in the system. 

Finally, we vary y keeping all other parameters fixed. Figures 15-17 show that y 
only affects the position of the contact line and not the speed. This supports the idea 
that the contact-line speed depends upon the deviation of the dynamic contact angle 
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FIGURE 12. The interface position a t  the contact line versus time for the case G ( O + )  = G(0-). 
y = 0.1 and V, = V, = 5.0. m, H =  0; 0 ,  0.1; 8, 0.3; +, 0.4. 
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FIGURE 13. The contact-line speed versus time for the case G ( O + )  = G(0-). y = 0.1 and 
V, = V, = 5.0. Symbols as figure 12. 
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FIGURE 14. The (laboratory frame) contact-line speed versus time for the case G ( O + )  = G(0-). 
y = 0.1 and V, = V, = 5.0. Symbols as figure 12. 

from the equilibrium values q5, and #,, and not on q5, and q5, themselves. We see 
from figure 15 that varying y just translates the position of the interface as all four 
curves can be superposed. As y decreases and becomes negative, #, assumes a value 
smaller than in. Princen (1969) gives the following expression for the static position 
of the contact line of a fluid against a motionless flat vertical wall: 

h,, = 2L, sin ($-$O). (5.9) 

This expression predicts that h,, increases as O decreases from $n, consistent with 
our figure 15. Murphy (1984) used (5.9) as the starting point for her analysis. 
However, in the limits u+O, and C-tO, her approach and the approach used here 
are equivalent. 

Figures 18,19,20 and 21 give plots of E versus the scaled depth of plate immersion. 

A =  1-sint, (5.10) 

which is obtained from (3.1) by neglecting that portion of the plate still submerged 
at the top of the stroke. In  figure 18, V, = V, = V ,  and M = 0.2. Note that the 
openness of the curves represents a dissipation of energy in the system. The 
magnitude of f appears to increase as the contact lines become less mobile, as 
measured by decreasing V.  Thus, a larger suspension force F is required to oscillate 
the plate when the contact lines are nearly fixed. 

Figure 19 in which V, + V, shows asymmetrical motion compared with figure 18 
where V, = V,. 

In figure 20 we vary the amount of hysteresis M in the system while keeping all 
other parameters fixed. Here V, = V, + 0 so that the contact lines are mobile and 
the contact angle steepens as the contact-line speed increases. We see that the curves 
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FIQURE 15. The interface position at the contact line versus time for the case G(0') = c ' (O- ) ,  
~ = 0 . 2 ~ d  v , = v , = ~ . o .  a , y = o ;  ~ , y = o . l ; A  y=-O.I;  +, y = - 0 . 2 .  y>Omeans 
4, = in. 

0.8 

0.5 

0.2 

A-cost 

-0.1 

-0.4 

-0.1 

-1.0 
1.5 2.7 3.9 5.1 6.3 7.5 

t 

FIQURE 16. The contact-line speed versus time for the case G(0') = G(0-), M = 0.2 and 
V, = V, = 5.0. y > 0 means (PA = in. Symbols as figure 15. All curves appear to coincide. 
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FIGURE 17. The (laboratory frame) contact-line speed versus time for the case G(0') = G(0-), 
M = 0.2 and V, = V, = 5.0. y > 0 means 6, = an. Symbols as figure 15. All curves appear to 
coincide. 
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FIGURE 18. The force versus the depth of immersion of a cycle for the case G ( O + )  = G ( O - ) .  

El, V = 75.0; 0,  5.0; A, 0.50; +, 0.05. y = 0.1, M = 0.2. 
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FIGURE 19. The force versus the depth of immersion for cycle for the case G ( O f )  =k G(0-). n, 
V, = 75.0 and VR = 3.0; Q, V, = 5.0 and VR = 3.0; V, = 3.0 and VR = 75.0; +, V, = 3.0 and 

A 

= 5.0. y = 0.1, M = 0.2. 

in figure 20 are open, even for M = 0, and that the degree of openness increases as 
M increases. This suggests that contact-angle hysteresis has a dissipative effect on 
a fluid/fluid/solid system and this effect increases for larger hysteresis. Furthermore, 
since the curves are also open when there is no hysteresis, then aspects of the 
mobility of the contact lines also represent a dissipative process. Thus, the openness 
of the curves of figures 18, 19 and 20 is due to dissipative contributions from the 
presence of contact-angle hysteresis and increase of the contact angle with contact-line 
speed. 

In  figure 21 all parameters are held fixed except the deviation of the advancing 
contact angle from in. When y < 0 the interface near the contact line is concave 
up and surface-tension forces tend to pull the plate into the fluid. Thus, a larger 
suspension force F is needed. On the other hand, when y > 0, the interface is concave 
down and surface-tension forces tend to pull the plate out of the fluid. Here, a smaller 
suspension force is required. 

In  summary, our force versus depth-of-immersion curves further support the 
notion that the increase of the contact angle with contact-line speed is a dissipative 
process as suggested by Davis (1980). The strength of this contribution to the overall 
dissipation in the system appears to go to zero as G(0)  approaches zero and infinity. 
In  figure 22, for M = 0, we plot the immersion curves for varying V ,  i.e. for varying 
G(0). Note that the openness of the curves approaches zero as V+O and 00,  the 
fixed-contact-line and fixed-contact-angle limits. 

In  addition we find that the greater the contact-angle hysteresis present in the 
system, the greater is the openness of the immersion curve. However, in lieu of the 
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FIQURE 20. The force versus depth of immersion for a cycle for the case G(0') = G ( O - ) .  y = 0.1 

and V, = V, = 5.0. m, M = 0; 0, 0.1; A, 0.3; f ,  0.4. 

fixed-contact-line result shown in figure 22, the latter statement appears to be true 
only when the hysteresis Ma is small. When M a  is large compared to the amplitude of 
the plate motion, the contact line is fixed to the plate throughout the motion. Hence, 
there is no dissipation. Thus, contact-angle hysteresis appears to also contribute to 
the dissipation in the system. This effect increases the dissipation as the hysteresis 
increases from zero but becomes negligible as the magnitude of the hysteresis 
becomes large. This suggests that contact-angle hysteresis may act as a stabilizing 
mechanism to contact-line disturbances. Such a conjecture was also proposed by 
Weiland & Davis (1981), although for different reasons. 

6. Square-wave plate motion 
There is a related analysis by Murphy (1984) of a square-wave plate motion as 

shown in figure 23. This analysis uses a somewhat different approach yet it is 
instructive to cast her results into our notation and to pose it in terms of our 
approximations. 

In  that work the plate speed is assumed to be a constant so that the cost term 
in (2.14) is replaced by the scaled constant speed of the plate. This motion is an 
idealization of the constant-speed-plate motion that experimenters approach using 
the Wilhelmy plates (Penn & Miller 1980a, b ;  Johnson, Dettre & Brandreth 1977). 

Suppose that the plate speed has the constant value 2Dw/n:, so that the maximum 
depth of the plate immersion is 2 0 .  In  this case we replace the cost term in (2.14) 

12-2 
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FIGURE 21. The force versus the depth of immersion for a complete cycle for the case G(0') 

M = 0.2 and V, = V, = 5.0. a, y = 0; 0, 0.1 ; A, -0.1 ; + , -0.2. y > 0 means $A 

= G(o-), 
= in. 

by +2/n, depending upon whether the plate is withdrawn from or pushed into the 
liquid. As before, we calculate the contact-line position and speed. For instance, 

when the plate is pushed in and the contact line is advancing. Here A, has the form 

k,=-V,C,+exp(-V,t) (6.2) 

and we have an analogous expression during the receding motion. The corresponding 
contact angle for the advancing motion is related to 

2 
h,, =-C,'exp(-VAt)+y+-. (6.3) 

n VA 

Both (6.2) and (6.3) show that for large values of t  the speed of the contact line and 
the contact angle tend toward steady-state values. In particular the velocity of the 
contact line approaches the negative of the plate velocity, while the contact angle 
takes on a dynamic value greater than $A. In the case of a receding motion, we find 
that the dynamic contact angle takes on a value less than &. 

In  figure 24 we plot a family of immersion curves for a fixed value of Dw 

= 1000. 
1 

corresponding to 
- V A - 5 -  
a a DwG(0)  

Here ya = n/36 and Ma = n/18. Such values describe either a material system with 
very mobile contact lines, G(0) small, or one run a t  a low plate speed. Note that 
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FIGURE 22. The force versus the depth of immersion for a cycle for the case c'(0') = c'(0-), 
M = 0 and y = 0.1. D, V = 80.0; 0, 5.0; A, 0.50; +, 0.01. 

increasing a corresponds to increasing D so that the plate is plunged further into the 
bath at lower frequencies. The upper and lower horizontal asymptotes give c o ~ q 5 ~  
and C O S ~ ~ ~  respectively, t o  within 0.01 %. However, one can make no conclusions 
regarding the value of G(0) at this point. It could either be small, implying that we 
are dealing with a material system described by a nearly fixed contact-angle 
behaviour, or we could be at such a low plate speed, 2 D w / ~ ,  that  the contact angles 
have time to  adjust to the equilibrium values. 

Now consider figure 25, where VA/a = VR/a = 10. If we are dealing with the same 
material system as in figure 24, this is realized by increasing the plate speed 
2Dw/n. For 01 as in figure 24 this can be done by running the plate a t  a higher 
frequency w .  For a > 0.796, the curves again exhibit upper and lower harizontal 
asymptotes corresponding to the minimum and maximum angles encountered in the 
plate cycle. Here for instance, the maximum advancing contact angle is 5.7' larger 
than This is to  be expected since the contact angle tends to increase with 
increasing contact-line speed as induced by the increasing speed of the plate. 

However, we see for a < 0.796 that  a horizontal asymptote does not exist. I n  these 
cases the frequency of plate motion is so large compared with the amplitude 2 0 ,  as 
measured by 01, that  the contact-line velocity never attains the steady-state value 
equal in magnitude to  the plate speed but oppositely directed. I n  other words, for 
this o the plate does not plunge far enough into the bath for the contact line to reach 
the steady-state value. This situation can be remedied by either increasing the plate 
stroke 2 0  or decreasing the plate frequency w .  

These results suggest a method for determining $A, $R, G(0') and G(0-) from 
measurements of the force on a moving plate as a function of its depth of immersion. 
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FIQURE 23. The plate speed V, versus t for one cycle. 
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FIQURE 24. The force versus the depth for the square-wave motion for the case 
VJu = V,/u = 1000, yu = 71/36 and Mu = 71/18. 
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FIGURE 25. The force versus the depth for the square-wave motion for the case 

VJu = vR/u = 10, yu = 51/36 and Mu = 51/18, 

First, measure the dimensional force and depth of immersion for a square-wave 
forcing function with a particular maximum plate speed 2Dwln. In  making these 
measurements, we must ensure that the frequency of motion of the plate w is 
sufficiently small that the contact-line speed attains its steady-state value 

Once the dimensional F and H data have been taken, E can be calculated using 
(3 .4b )  modified for zero acceleration of the plate and a linear law for the depth of 
immersion. F may then be plotted as a function of H = HID. The upper asymptote 
of the resulting immersion curve gives the cosine of the dynamic contact angle a t  
U,, = -2Dw/x. The lower asymptote gives the dynamic contact angle a t  
U,, = ZDw/n. If upper and lower asymptotes do not exist, the experiment should 
be repeated at a smaller w .  

This process can now be repeated for different Dw values. In  this way, the 
dependence of 8 on U,, can be measured. For Uc,  greater than zero, the slope of 
the curve gives G ( O + ) ,  and the y-intercept gives $A. Similarly, for UcL less than zero, 
the slope gives G ( O - )  and the intercept &. 

It should be emphasized that our analysis is valid only for small values of a,  for 
small C, and for a linear relationship between B and UCL. Murphy (1984) claims 
validity of her analysis at larger a. By running the experiments at the smallest 
practical Dw-values, we achieve the smallest a-value and guarantee that C is also 
small. The assumption of a piecewise-linear relationship between B and U,, is a 
convenience, more general forms are easily incorporated. 

Uc, = - 2Dw/x. 
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7. Conclusions 
We have considered the oscillatory motion of a solid plate into and out of a bath 

of liquid. The problem is taken to be two-dimensional so that the contact line is 
straight, and can be viewed as an advancing or receding front of liquid. 

In  order to study the effects of hysteresis for a continuous motion of the plate, we 
take the plate displacement to be sinusoidal with non-dimensional amplitude a and 
period 2n. For small capillary number C we consider that the static advancing 
contact angle #, is $, = in + ya  and that the contact-angle hysteresis is 
$,-$, = Ma, where y and M are 0 ( 1 )  as a+O. Further we take the characteristic 
of contact angle versus contact-line speed to be piecewise linear, with G ( O + )  and 
G (0-) measuring the slopes for advancing and receding portions respectively. 

Our analysis shows that the contact-line mobilities enter through the numbers V, 
and V,, viz. 1 v -  1 v -  

A - L , ~ C ‘ ( O + ) ’  - L , ~ G ( O - ) ’  

where w is the angular frequency of oscillation of the plate and L, is the capillary 
length (g/pg): .  

For small a, a = D/L, ,  where 2 0  is the displacement amplitude of the plate, we 
obtain 2n-periodic contact-line motions that develop after initial transients have 
decayed. 

We find that the contact line moves with the plate if the contact line is fixed but 
has relative motion otherwise. It would then advance part of the time, recede part 
of the time and remain stationary in the transition periods. 

Dependence on y .  The departure of $A from ?p affects the position of the interface 
near the contact line. If y < 0 so that $A < in, the contact line tends to climb the 
plate forming a concave-upward interface. If y > 0 so that 4 > in, the contact line 
crawls downward forming a concave-downward interface. The value of y does not 
affect the speed of the contact line nor the time intervals when the contact line is 
fixed. The contact-line speed depends on differences between 8 from $, or $, and 
not on $A and $, individually. Likewise, the hysteresis affects the length of time that 
the contact-line remained stationary through $,-$, and not on $, itself. 

Dependence on M .  The amount of hysteresis in the system directly affects the time 
intervals during which the contact line is fixed. These times approach zero as M 
approaches zero, and they increase as M increases. Thus, when hysteresis is present, 
the contact lines must remain fixed to the plate as the contact-line motion changes 
from an advancing to a receding state or vice-versa since this transition does not 
occur instantaneously. The larger the hysteresis in the system, the longer i t  takes. 

Dependence on V, and V,. These parameters measure the mobility of the contact 
line and have the strongest influence on the position of the contact line, the 
contact-line speed and the contact angle. In light of (7 .1) ,  suppose that w and L, are 
fixed and that G ( O + )  = G(0-) = G ( O ) ,  which implies a symmetric response for the 
immersion and emersion portions of the cycle. 

The limit G ( O ) +  co implies that the contact line is fixed to the plate. We have 
shown that V, = V, = 0 results in the contact line always following the plate with 
the speed of the contact line relative to the plate being zero. Hysteresis has no effect 
for this motion. 

The limit G ( O ) + O  implies that the contact angle is fixed. We have shown that 
V, = VR+ co results in the contact angle being fixed at $, during the time interval 
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( t z ,  t 3 )  and being fixed at $, during the interval ( t 4 .  t * ) ;  see table 2. Here t ,  = to and 
t* = to+%.  At these times the velocity of the contact line is exactly opposite that 
of the plate so that the contact line looks stationary to an observer. During the 
interval ( t l ,  t , )  the contact line is fixed as 6 varies from #, to 4,; during the interval 
( t3 .  t 4 )  the contact line is fixed as 6 varies from 4, to 4,. The contact-line speed is 
zero a t  these times so that the contact line appears to an observer to move with the 
plate. We have shown, though that the contact-line motion described here necessarily 
involves a jump in the contact-line speed at t ,  and t , .  This leads one to question the 
fixed-contact-angle assumption often posed in contact-line problems. 

For values of G’(0) other than zero and 00, the contact-line motion fits somewhere 
between the above regimes; see table 2 .  The contact-line speeds are continuous for 
these cases. Let us now fix L, and 0 < G(0) < co and consider the effects of varying 
w .  Since the contact-line motion becomes most pronounced as G(0) decreases to zero, 
the contact-line forces are the strongest for that case. Now, as w+O,  the plate speed 
becomes extremely slow. Thus the plate motion impresses little upon the contact line. 
V, and V, become large; the contact angles have time to adjust to the equilibrium 
values (bA or $, and i t  appears that the contact angles are fixed. On the other hand 
when w becomes large, but keeping the capillary number small, the plate is moving 
quickly. This motion is felt by the contact line and it overwhelms the contact-line 
forces, G(0). V, and V, approach zero and the contact line stays fixed to the plate. 

We now fix 0 < w < co, and 0 < G(0) < co and consider the effects of varying L, 
or surface tension. When surface tension is small, the interface is flexible. It will easily 
distort and the contact-line forces dominate the contact-line motion. V, and V, 
become large. The contact-line forces have little competition and the contact angles 
adjust to the equilibrium values. Again i t  appears as though G(0) approaches zero. 
Now if surface tension is large, these forces will dominate the contact-line forces. 
They cannot overcome the stiff interface so the contact line does not move. It stays 
fixed to the plate and it appears as if G’(0) approaches co. 

Additionally, the force required to suspend the plate in the bath plotted versus 
the depth of immersion of the plate shows, over the complete cycle of the plate 
motion, that energy is dissipated in the system. The mechanisms responsible for this 
energy dissipation are the presence of contact-angle hysteresis and the steepening of 
the contact angle with increasing contact-line speed. The former effect is suppressed 
as the hysteresis becomes large and the contact line stays fixed over a larger portion 
of the cycle. The latter effect is suppressed for the cases of fixed contact angle and 
fixed contact line when the contact angle is independent of the speed of the contact 
line. 

The above gives the small capillary number, small-displacement-amplitude re- 
sponse of the contact line when hysteresis is present and the plate motion is 
continuous. Most experimentalists aim to use a plate motion in which the plate speed 
is constant so that one can accurately measure the angle. The same type of analysis 
used for the sinusoidal motion of the plate has also been applied to a square-wave 
form for the plate speed. We have obtained force-displacement curves again showing 
the care that must be taken and the explanation for the loop-area variations seen. 

In summary, the major general conclusions of the analysis are as follows : 
(1) When hysteresis is present, the contact lines must remain fixed for a non-zero 

length of time when undergoing a transition from an advancing to a receding motion. 
(2) The fixed-contact-angle assumption may lead to  physically unrealistic contact- 

line-speed responses. 
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(3) Measurements used to determine how the contact angle varies with the speed 
of the contact line can be misleading owing to dynamical effects in the system. We 
describe precautions that should be observed to avoid the ambiguity in experiments. 
(4) Contact-angle hysteresis and the steepening of the contact angle with increasing 

contact-line speed are dissipative effects, both of which contribute to the presence 
of open force-displacement loops. 

( 5 )  Even though our results are obtained in the creeping-flow limit, the motion 
of the contact line tends to lag behind the plate motion in such a way that the contact 
line still moves although the plate is motionless. Thus, there exists an apparent 
inertial effect due to contact-line effects. 

The authors are grateful to Dr E. B. Dussan V. for valuable discussions and 
suggestions, particularly on the relationship between our results and the experimental 
protocols. This work was sponsored by the National Science Foundation, Fluid 
Mechanics Program. 
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